The nature of this complex and the mode of its presumed association with the DNA substrate are under investigation.

Acknowledgment. We thank Dr. Herbert Kolodziej (Wilhelms-Universität, Münster) for an authentic sample of procyanidin B₂, Dr. V. S. Murty for helpful assistance with some of the initial bioassays, and Dr. Reuel Van Atta for assistance with ESR measurements. This work was supported by P.H.S. Grant CA40291, awarded by the National Cancer Institute, D.H.H.S.

(15) A solution of 10 mM (-)-epicatechin and 1 mM Cu(ClO₄)₂ (50 mM sodium cacodylate, pH 7.0; -140 °C) gave an EPR signal indicative of Cu(II) complex formation, $g_{\perp} \approx 2.04$; $g_{\parallel} \approx 2.28$, as evidenced by splitting of the Cu(II) signal. No EPR signal was observed in the absence of Cu(II). The UV absorption maximum shifted from 280 nm to 295 nm upon addition of equimolar CuCl₂

Novel 1,2-Migration Reactions of Organometals Containing Aluminum, Zinc, and Other Main Group Metals with α -Haloorganolithiums

Ei-ichi Negishi*1 and Kazunari Akiyoshi

Department of Chemistry, Purdue University West Lafayette, Indiana 47907 Received September 21, 1987

1,2-Migration or migratory insertion is, in principle, one of the most fundamental patterns for carbon-carbon and carbon-hetero atom bond formation. Indeed, the majority of carbon-carbon bond-forming reactions of organoboron compounds proceed via 1,2-migration.² Carbonylation and related reactions of organo transition metals are representative examples of the 1,2-migration reactions involving transition metals.³ At present, however, relatively little is known about 1,2-migration reactions involving main group metals other than boron. For example, although the reaction of organoalanes with diazomethane to give homologated organoalanes⁴ most likely involves 1,2-migration, virtually no other 1,2-migration reactions of organoalanes are known.⁵ We now wish to present experimental data which suggest that the 1,2migration reactions of organo main group metals are much more widespread than the previously available data indicated.

Typically, addition of *i*-Bu₃Al (0.505 mL, 2.0 mmol) to $LiCH(Cl)SiMe_2Ph^6$ (1) at -78 °C, generated in situ by treating ClCH₂SiMe₂Ph (0.554 g, 3.0 mmol) and 0.452 mL (3.0 mmol) of tetramethylethylenediamine (TMEDA) in 9.2 mL of THF with 2.3 mL (1.3 M, 3.0 mmol) of sec-BuLi in cyclohexane at -78 °C, followed by warming the mixture to 23 °C, stirring at this temperature for 6 h, treatment with water at 0 °C, and the usual extractive workup and chromatography (silica gel, pentane) provided an 80% GLC yield (62% isolated) of *i*-BuCH₂SiMe₂Ph⁷ (2): ¹H NMR (CDCl₃, Me₄Si) δ 0.21 (s, 6 H), 0.5–0.8 (m, 2 H), 0.83 (d, J = 6.5 Hz, 6 H), 1.0–1.7 (m, 3 H), 7.3–7.7 (m, 5 H); 13 C NMR (CDCl₃) δ -3.10, 13.07, 22.12, 30.92, 32.85, 127.69,

(1) John Simon Guggenheim Memorial Foundation Fellow (1987).

(2) (a) Brown, H. C. Organic Synthesis via Boranes; Wiley-Interscience: New York, 1975. (b) Negishi, E. In Comprehensive Organometallic Chem-(b) Registi, E. III Comprehensite Organometatic Chem-istry; Wilkinson, G., Stone, F. G. A., Abel, F. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 7, pp 255-363.
 (3) Collman, J. P.; Hegedus, L. S. Principles and Applications of Orga-notransition Metal Chemistry; University Science Books: Mill Valley, CA, 1990

1980

(4) Hoberg, H. Ann. Chem. 1962, 656, 1; 1966, 695, 1.

 (5) (a) Mole, T.; Jeffrey, E. A. Organoaluminum Compounds; Elsevier: Amsterdam, 1972.
 (b) Zweifel, G. In Comprehensive Organic Chemistry; Barton, D. H. R., Ollis, W. D., Eds.; Pergamon Press: Oxford, 1979; Vol. 3, pp 1013-1059.
 (c) Eisch, J. J. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 1, pp 555-680.
 (d) Zweifel, G.; Miller, J. A. Org. React. 1984, 32, 375-517. 32, 375-517

(6) (a) Burford, C.; Cooke, F.; Ehlinger, E.; Magnus, P. J. Am. Chem. Soc. 1977, 99, 4536. (b) Matteson, D. S.; Majumdar, D. J. Organomet. Chem. 1980, 184, C41.

Table I. 1,2-Migration Reactions of Organometals Containing Aluminum and Other Main Group Metals with LiCH(Cl)SiMe2Ph (1)^a

organometals	products	time, h	yield, ^b %
i-Bu ₃ Al	<i>i</i> -BuCH ₂ SiMe ₂ Ph	6	80 (62)
i-Bu ₂ AlCl	i-BuCH ₂ SiMe ₂ Ph	48	5
n-Pr ₃ Al	n-PrCH ₂ SiMe ₂ Ph	6	77 (53)
Me ₃ Al	MeCH ₂ SiMe ₂ Ph	6	83
(E)-n-HeptCH=	(E)-n-HeptCH=CHSiMe ₂ Ph	1	85 (65)
CHAl(Bu-i)2 ^c	and <i>i</i> -BuCH ₂ SiMe ₂ Ph		9
i-Bu ₂ AlPh ^d	PhCH ₂ SiMe ₂ Ph	6	48
	and <i>i</i> -BuCH ₂ SiMe ₂ Ph		31
n-Bu2Mge	n-BuCH ₂ SiMe ₂ Ph	0.5	72
n-Bu ₂ Zn ^e	n-BuCH ₂ SiMe ₂ Ph	0.5	61
n-BuZnCl ^e	n-BuCH ₂ SiMe ₂ Ph	24	10
n-Bu ₂ Cd ^e	n-BuCH ₂ SiMe ₂ Ph	1	55

^eUnless otherwise mentioned, all reactions were carried out under the standard conditions reported in the text. ^bBy GLC based on an organometal. The numbers in parentheses are isolated yield. Prepared by the reaction of DIBAH with 1-octyne. ^d Prepared by the reaction of *i*-Bu₂AlCl with 1 equiv of PhLi. Prepared by the reaction of the corresponding metal dichloride with n-BuLi.

128.71, 133.55, 139.52; IR (neat) 1250 (s), 1110 (s), 840 (s) cm⁻¹; high resolution MS calcd for $C_{13}H_{22}Si$ 206.1491, found 206.1478. Also obtained was Me₃SiPh (0.45 equiv out of 1.5 equiv of ClCH₂SiMe₂Ph). Little or no ClCH₂SiMe₂Ph was recovered. As shown in Table I not only some other organoalanes, such as n-Pr₃Al (77%, 6 h) and Me₃Al (83%, 6 h), but also organometals containing Mg, Zn, and Cd, such as n-Bu₂Mg (72%, 0.5 h), n-Bu₂Zn (61%, 0.5 h), and n-Bu₂Cd (55%, 1 h), have produced the corresponding RCH2SiMe2Ph in the yields indicated in parentheses within the indicated reaction times under otherwise the same conditions (eq 1). On the other hand, the reaction of Me₃SnCl with 1 merely gave Me₃SnCH(Cl)SiMe₂Ph in 75% yield.

$$L_{\rho}MR \xrightarrow{1. \text{ LiCH(C)SiMe_2Ph(1)}} RCH_2SiMe_2Ph$$
(1)

R = Me. n-Pr, n-Bu, or /-Bu MLn = Al-, Mg-, Zn, or Cd-containing group

The reaction of (E)-n-HexCH==CHAl(Bu-i)₂ with 1 under the above-mentioned conditions gave isomerically >98% pure (E)n-HeptCH=CHSiMe₂Ph (3) in 85% yield along with a 9% yield of 2. The same reaction run at 0 °C under otherwise the same conditions produced 2 and 3 in 4% and 75% yields, respectively. Thus, the reactivity of the (E)-1-octenyl group relative to the *i*-Bu group at 23 or 0 °C is 19 or 38, respectively. Workup with D_2O gave essentially pure (E)-3-deuterio-1-nonenyldimethylphenylsilane (4) in 80% yield, indicating that an Al atom was bonded to the C-1 or C-3 atom of the alkenyl group (eq 2). The reaction of i-Bu₂AlPh with 1 gave within 6 h at 23 °C PhCH₂SiMe₂Ph and 2 in 48% and 31% yields, respectively. Thus, the Ph/Bu-i reactivity ratio is 3.1.

The above described reactions can, in principle, proceed by various mechanisms. The three most likely paths deserving our attention are those involving (i) 1,2-migration (eq 3), (ii) direct displacement (eq 4), and (iii) carbene insertion (eq 5).

⁽⁷⁾ All new isolated products have been adequately characterized by 1 H and 13 C NMR, IR, and mass spectrometries. All new isomerically homogeneous compounds have been further characterized by elemental analyses.

0002-7863/88/1510-0646\$01.50/0 © 1988 American Chemical Society

The currently available data on the reaction of organoalanes with 1 clearly favor the 1,2-migration path over the other two. First, the reaction of either *i*-Bu₃Al or Me₃Al with 1 monitored at 23 \pm 0.1 °C by GLC follows first-order kinetics ($k = 2.0 \times$ 10^{-2} min^{-1} , r = 0.998 or $k = 3.4 \times 10^{-3} \text{ min}^{-1}$, r = 0.998) in a 4:1 mixture of THF and cyclohexane, but it does not obey second-order kinetics, disfavoring the direct displacement path (eq 4). Mixing *i*-Bu₃Al with ClCH₂SiMe₂Ph does not induce any reaction under comparable conditions. Second, examination of the mixture of the reaction of Me₃Al with 1 by ¹H NMR indicates that, upon mixing the two reagents, the Me signal for Me₃Al at -1.03 ppm initially shifts to -1.24 ppm, although the signal at -1.03 ppm is quite insensitive to various solvents such as cyclohexane, THF, and even TMEDA, staying well within the -1.01 to -1.03 ppm range. The Me signal for LiAlMe₄ appears at -1.33 ppm. As the reaction proceeds, the signal at -1.24 ppm shifts back to -1.02 ppm over several hours. The signals at -1.24 and -1.02 ppm, we believe, are attributable to the formation of 5 and 6. Although we have not monitored the reaction of i-Bu₃Al with 1 by ¹H NMR, quenching an aliquot of this reaction mixture shortly after raising the reaction temperature to 23 °C gave 0.79 equiv of ClCH₂SiMe₂Ph and 0.16 equiv of *i*-BuCH₂SiMe₂P along with 0.45 equiv of Me_3SiCH_2Ph out of 1.5 equiv of $ClCH_2SiMe_2Ph$. Under comparable conditions, quenching a solution which initially contained only 1 without i-Bu₃Al gave a considerable amount of an unidentified but apparently dimeric product but little or none of ClCH₂SiMe₂Ph. These results again indicate the formation of an aluminate complex 7 which slows down decomposition of the ClCHSiMe2Ph anion and releases ClCH₂SiMe₂Ph upon quenching.

The reaction of organoalanes with LiCHCl₂⁸ leads to formation of two new carbon-carbon bonds within one molecule. Thus, the reaction of *i*-Bu₂AlPh, generated in situ from *i*-Bu₂AlCl and PhLi, with LiCHCl₂ (1.3 equiv) at -100 to 40 °C in a mixture of THF-ether-hexane-cyclohexane (5:3:3:1) produced, after hydrolysis, *i*-BuCH₂Ph in 53% yield. Under similar conditions the reaction of *i*-Bu₂AlCh=CHHex-*n*-(*E*) with LiCHCl₂ produced a 75% combined yield of a nearly 1:1 mixture of *i*-BuCH₂CH= CHHex-*n* and *i*-BuCH=CHHept-*n*, each of which was an *E* and *Z* mixture. Although this reaction needs to be further developed, it appears to represent the first example of double-transfer reactions in which two carbon groups of an organoalane get transferred to one molecule, i.e., LiCHCl₂.

We believe that the results presented here have just opened up a major new area of 1,2-migration reactions of organo main group metals other than organoboranes. Unlike the latter, organometals containing Al, Mg, Zn, Cd are readily hydrolyzed to produce organic products. This would make the synthetic significance of their 1,2-migration reactions quite distinct from those of organoboranes.

Acknowledgment. We thank the National Science Foundation (CHE 8503075) and the Petroleum Research Fund administered by the American Chemical Society (18710-AC1) for support of this research. We also thank Dr. Brian O'Connor for carrying out the reaction of n-Pr₃Al with LiCH(Cl)SiMe₂Ph.

Supplementary Material Available: IR, ¹H NMR, and ¹³C NMR data for 2-4 and other unnumbered compounds in this paper. (2 pages). Ordering information is given on any current masthead page.

Synthesis and Characterization of a Silver(I) Triflate Sandwich Complex of 1,2:5,6:9,10-Tribenzocyclododeca-1,5,9-triene-3,7,11triyne. The First Example of a 12-Membered Macrocycle Sandwich Complex

Joseph D. Ferrara, Abdellah Djebli, Claire Tessier-Youngs, and Wiley J. Youngs*

Department of Chemistry Case Western Reserve University Cleveland, Ohio 44106-2699

Received September 18, 1987

The ligand 1,2:5,6:9,10-tribenzocyclododeca-1,5,9-triene-3,7,11-triyne¹ (TBC) has shown much versatility in its reaction chemistry with various transition-metal compounds via binding of the transition-metal center to the carbon-carbon triple bond.

Complexes of TBC already synthesized and structurally characterized include mononuclear nickel(0) and copper(I) complexes,^{2,3} a trinuclear copper(I) complex,⁴ and a tetranuclear cobalt(0) cluster.⁵ This communication reports the synthesis of a novel silver(I) sandwich complex 1 from the reaction of AgS-O₃CF₃ with TBC. Numerous examples of 3–8-membered hydrocarbon ring transition-metal sandwich complexes⁶ have been previously reported, but complex 1 is the first example of a 12membered macrocycle sandwich complex.

All manipulations were performed by using standard inert atmosphere techniques. In a typical reaction, $AgSO_3CF_3^7$ (0.171 g, 0.666 mmol) and TBC⁸ (0.100 g, 0.333 mmol) were allowed

0002-7863/88/1510-0647\$01.50/0 © 1988 American Chemical Society

^{(8) (}a) Kobrich, G.; Flory, K.; Drischel, W. Angew. Chem., Int. Ed. Engl. 1964, 3, 513. (b) Matteson, D. S.; Majumdar, D. Organometallics 1983, 2, 1529.

⁽¹⁾ Staab, H. A.; Graf, F. Tetrahedron Lett. 1966, 751-757.

⁽²⁾ Ferrara, J. D.; Tessier-Youngs, C.; Youngs, W. J. J. Am. Chem. Soc. 1985, 107, 6719-6721.

⁽³⁾ Ferrara, J. D.; Tessier-Youngs, C.; Youngs, W. J. Organometallics 1987, 6, 676-678.

⁽⁴⁾ Ferrara, J. D.; Tessier-Youngs, C.; Youngs, W. J. *Inorg. Chem.*, submitted for publication.

⁽⁵⁾ Djebli, A.; Ferrara, J. D.; Tessier-Youngs, C.; Youngs, W. J. J. Chem. Soc., Chem. Commun., submitted for publication.
(6) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; John Wiley and Sons: New York, 1980; pp 1161-1173.

John Wiley and Sons: New York, 1980; pp 1161-1173.
 (7) AgSO₃CF₃ was purchased from Alfa Products and recrystallized from diethyl ether/hexane.